

Available online at www.sciencedirect.com

Journal of Power Sources 123 (2003) 75-78

www.elsevier.com/locate/jpowsour

Short communication

Structural and electrochemical properties of $LiNi_yTi_{1-y}O_2$ prepared by a wet process

Jae Woo Joeng, Seong-Gu Kang*

Department of Chemical Engineering, Hoseo University, Asan, Chungnam 336-795, South Korea

Received 21 February 2003; accepted 20 March 2003

Abstract

LiNi_yTi_{1-y}O₂ ($0.7 \le y \le 0.95$) solid solution has been prepared by a wet process. According to X-ray diffraction analysis, these materials are found to have a rhombohedral layered structure($R\bar{3}m$) and are an isostructure LNiO₂. The I(104)/I(003) intensity ratio is increased with Ti concentration, which indicates the cation mixing between transition metal layer and lithium layer is occurred. The LiNi_yTi_{1-y}O₂ compounds have well-developed layered structures and a particle size of ~1 µm. The titanium and nickel in the lattice is found to be trivalent and bivalent, respectively. The first discharge capacity of LiNi_yTi_{1-y}O₂ is 10–25 mAh g⁻¹. These values are inferior to those of LiNi_yTi_{1-y}O₂ prepared by a solid-state reaction (30 mAh g⁻¹). The low discharge capacities are due to local structural change during the first charge, where transition metal ions in the lithium layer block the diffusion of Li ions. © 2003 Published by Elsevier Science B.V.

Keywords: Lithium secondary battery; Cathode material; LiNiyTi1-yO2

1. Introduction

LiNiO₂ has been proposed as a cathode material for lithium secondary batteries [1]. LiNiO₂ is a non-stoichiometric compound with the formula of $[Li_{1-z}+Ni_{z}^{2+}][Ni^{3+}]$ $Ni_z^{2+}O_2$ (0 < z < 0.2) as determined by the preparation on conditions [2,3]. A small amount of structural disorder due to the displacement of nickel and lithium ions in LiNiO₂ strongly affects the electrochemical properties such as the working voltage and the rechargeable capacity. As the de-intercalation reaction proceeds below x = 0.5 in Li_xNiO₂, some irreversible structural rearrangements occur, which lead to irreversible electrochemical reactions [4]. The solid solution of $\text{LiNi}_{v}M_{1-v}O_2$ (M = Cr, Mn, Co, etc.) has been studied in order to improve the efficiency of batteries containing LiNiO₂ [5-8]. Most of the compounds, expect those containing, cobalt, show cation mixing between the layers.

In the previous study [9], Ti ions were used substitute the Ni ions in LiNiO_2 prepared by a solid-state reaction, since these are advantages in terms of lower atomic weight and clear reduced (III)–oxidized (IV) states in the Li-intercalation reaction. An attempt has been made to determine the partially-disordered layer structure induced by the

* Corresponding author.

substitution of Ti ions in LiNiO₂, in which LiNi_yTi_{1-y}O₂ should be a solid solution between LiNiO₂ and LiTiO₂. In addition LiNi_yTi_{1-y}O₂ should have the partially-disordered structure LiTiO₂ [10,11].

In this study, the structural and electrochemical properties of $\text{LiNi}_y\text{Ti}_{1-y}\text{O}_2$ prepared by a wet process are studied and the results compared with those for $\text{LiNi}_y\text{Ti}_{1-y}\text{O}_2$ synthesized by a solid state reaction.

2. Experimental

The LiNi_yTi_{1-y}O₂ compounds were prepared by a wet process using citric acid (C₆H₈O₇) as follows. Li₂CO₃, Ni(NO₃)₂·6H₂O and C₆H₈O₇ were dissolved with a mole ratio of 1:1:3 in distilled water. In order to make the TiO(H₂O₂)²⁺ complex, TiCl₃ was added to 0.1 M H₂O₂ solution. The TiO(H₂O₂)²⁺ complex solution was slowly added to the lithium nickel citrate solution. The solution was adjusted to a pH of 6–7 with aqueous NH₄OH. Finally, the citrate sol was formed. The solution was evaporated at 80 °C and the subsequent organometallic complexes were decomposed into organic compounds and the metal oxide precursor at 300 °C. The metal oxide precursor was pre-heated at 600 °C for 10 h and annealed at 700 or 800 °C for 20 h in air to obtain LiNi_yTi_{1-y}O₂.

The X-ray diffraction patterns were recorded using a MAC Science MXP 18 XRF diffractometer with Ni-filtered

E-mail address: sgkang@office.hoseo.kr (S.-G. Kang).

Cu K α radiation by step scanning (0.02°) in the 2 θ range 10°–80°. Scanning electron microscopy (SEM) was performed with a Hitachi S800 microscope in order to examine the morphology of the samples. The valence state of transition metal ions was investigated by X-ray photoelectron spectroscopy (XPS). The XPS spectra were obtained by means of a ESCA-LAB 200R, VG Scientific spectrometer. A Mg K α X-ray source (1253.6 eV) was used. The base pressure of the sample chamber in the spectrometer was lower than 10⁻⁹ Torr. All binding energies were corrected with the C 1s line at 284.5 eV.

To examine the electrochemical properties of $\text{Li}_x \text{Ni}_y$ Ti_{1-y}O₂, an electrochemical cell was fabricated as follows. A cathode was prepared with 89 wt.% $\text{Li}_x \text{Ni}_y \text{Ti}_{1-y} \text{O}_2$ 10 wt.% acetylene black, and 1 wt.% PTFE binder. The electrolyte was a 1 M LiPF₆-ethylene carbonate (EC): diethyl carbonate (DEC) (1:1) solution. A lithium metal anode was used. Test cells were assembled in a glove-box filled with argon gas. The cells were cycled in the voltage range 3.0–4.2 V at a constant current density (50 μ A cm⁻²) using a galvanostatic charge–discarge cycle tester.

3. Results and discussion

According to XRD analysis, the $\text{LiNi}_y \text{Ti}_{1-y} O_2$ (0.7 $\leq y \leq 0.95$) compounds are found to be isostructural with LiNiO_2 , which has the rhombohedral layered structure $(R\bar{3}m)$. The XRD patterns of $\text{LiNi}_y \text{Ti}_{1-y} O_2$ (0.7 $\leq y \leq 0.95$) synthesized at 800 °C are shown in Fig. 1. The I(104)/I(003) intensity ratio is increased with Ti concentration in $\text{LiNi}_y \text{Ti}_{1-y} O_2$. It is understood that a small amount of the transition metal ion (Ni, Ti) is positioned in the lithium site due to the partial disordering, which leads to quasi two-dimensional structural character. Considering that the ionic radii of Ni(II) (0.83 Å) and Ti(III) (0.81 Å) are similar to that of Li ion (0.90 Å) rather than that of Ni(III) (0.74 Å HS, 0.70 Å LS), the Ni(II) and Ti(III) ions can be

Fig. 1. X-ray diffraction patterns for LiNi_yTi_{1-y}O₂ (0.7 $\leq y \leq$ 0.95) synthesized at 800 °C.

partially positioned in the lithium site. The cell parameter is gradually increased with the rate of Ti substitution due to the presence of larger Ti ions and the formation of a lower oxidation state of nickel. The structural properties of LiNi_yTi_{1-y}O₂ (0.7 $\leq y \leq$ 0.95) synthesized at 700 °C are similar to those of LiNi_yTi_{1-y}O₂ heat-treated at 800 °C.

Electron micrographs show the LiNi_yTi_{1-y}O₂ compounds to have a well-developed layered structure and the particle size of the samples is $2-3 \mu m$, which is smaller than that of

Fig. 2. Scanning electron micrograph of $\text{LiNi}_{v}\text{Ti}_{1-v}\text{O}_{2}$ synthesized at 800 °C: (a) y = 0.7; (b) y = 0.95.

Fig. 3. X-ray photoelectron spectra for Ni 2p_{3/2} of LiNi_vTi_{1-v}O₂ synthesized at 800 °C.

LiNi_yTi_{1-y}O₂ prepared by a solid-state reaction ($\leq 10 \,\mu m$ Fig. 2).

From XPS analysis, the valence states of Ti and Ni ions are found to be Ti^{3+} and $Ni^{3+/2+}$, respectively. Ti $2p_{3/2}$ lines with binding energy (BE) of 456.8 eV correspond to Ti(III). The major Ni $2p_{3/2}$ line with a binding energy of 854.1 eV and a shoulder with a binding energy of 855.9 eV correspond to Ni²⁺ and Ni³⁺, respectively (Fig. 3). This implies that Jahn–Teller distortion in LiNi_yTi_{1-y}O₂ is reduced with decreasing Ni³⁺ ions due to the substitution of Ti³⁺ ions. The electrochemical behavior of a Li//LiNi_yTi_{1-y}O₂ cell was examined at a constant current density (50 μ A cm⁻²). The first charge–discharge curve of LiNi_yTi_{1-y}O₂ (y = 0.95) synthesized at 800 °C is shown in Fig. 4. The compound shows a large irreversible capacity loss and polarization. This behavior is shown by all the compounds. The first discharge capacities of LiNi_yTi_{1-y}O₂ are 15–25 mAh g⁻¹. These values are lower than those of LiNi_yTi_{1-y}O₂ prepared by a solid-state reaction (30 mAh g⁻¹). The discharge capacities of the LiNi_yTi_{1-y}O₂ compounds are drastically decreased during prolonged cycles. The low discharge

Fig. 4. Charge–discharge curves of Li//LiNi_yTi_{1-y}O₂ (y = 0.95) synthesized at 800 °C.

capacities and poor cycle behavior are due to local structural changes during the first charge, where transition metal ions in the lithium layer block the diffusion of Li ions.

4. Conclusions

LiNi_yTi_{1-y}O₂ (0.7 $\leq y \leq$ 0.95) compounds are found to have a rhombohedral layered structure($R\bar{3}m$) and are an isostructure of LiNiO₂. The first discharge capacities of LiNi_yTi_{1-y}O₂ are inferior to those of LiNi_yTi_{1-y}O₂ prepared by a solid-state reaction. The low discharge rates are due to local structural change during the first charge, where transition metal ions in the lithium layer block the diffusion of Li ions.

Acknowledgements

This work was supported by Grant No. R-05-2001-000-00195-0 from the Basic Research Program of the Korea Science & Engineering Foundation.

References

- J.R. Dahm, U. Sacken, M.W. Juzkow, H. Al-Janaby, J. Electrochem. Soc. 138 (1991) 2207.
- [2] G. Dutta, A. Manthiram, J.B. Goodenough, J.C. Grenier, J. Solid State Chem. 96 (1992) 123.
- [3] A. Rougier, C. Delmas, A.V. Chadwick, Solid State Comm. 94 (1995) 123.
- [4] J. Morales, C. Perez-Vicente, J.L. Tirado, Mat. Res. Bull. 25 (1990) 623.
- [5] C.D. Rossen, W. Jones, J.R. Dahn, Solid State Ionics 57 (1992) 311.
- [6] J.N. Reimers, E. Rossen, D.D. Jones, J.R. Dahn, Solid State Ionics 61 (1993) 335.
- [7] R.J. Gummow, M.M. Thackeray, J. Electrochem. Soc. 140 (1993) 3365.
- [8] J. Kim, K. Amine, J. Power Sources 104 (2002) 33.
- [9] S.H. Chang, S.G. Kang, S.W. Song, J.B. Yoon, J.H. Choy, Solid State Ionics 86–88 (1996) 171.
 [10] A. Mendibourn, C. Delmas, P. Hagenmuller, Mater. Res. Bull. 19
- (1984) 1383.
- [11] T.A. Hewston, B.L. Chamberland, J. Phys. Chem. Solids 48 (1987) 97.